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Abstract—Cyber systems play a critical role in improving the ef-
ficiency and reliability of power system operation and ensuring the
system remains within safe operating margins. An adversary can
inflict severe damage to the underlying physical system by compro-
mising the control and monitoring applications facilitated by the
cyber layer. Protection of critical assets from electronic threats has
traditionally been done through conventional cyber security mea-
sures thatinvolve host-based and network-based security technolo-
gies. However, it has been recognized that highly skilled attacks can
bypass these security mechanisms to disrupt the smooth operation
of control systems. There is a growing need for cyber-attack-re-
silient control techniques that look beyond traditional cyber de-
fense mechanisms to detect highly skilled attacks. In this paper, we
make the following contributions. We first demonstrate the impact
of data integrity attacks on Automatic Generation Control (AGC)
on power system frequency and electricity market operation. We
propose a general framework to the application of attack resilient
control to power systems as a composition of smart attack detec-
tion and mitigation. Finally, we develop a model-based anomaly
detection and attack mitigation algorithm for AGC. We evaluate
the detection capability of the proposed anomaly detection algo-
rithm through simulation studies. Our results show that the algo-
rithm is capable of detecting scaling and ramp attacks with low
false positive and negative rates. The proposed model-based miti-
gation algorithm is also efficient in maintaining system frequency
within acceptable limits during the attack period.

Index Terms—Anomaly detection, automatic generation control,
intrusion detection systems, kernel density estimation, supervisory
control and data acquisition.

I. INTRODUCTION

HE scope of cyber attacks discovered in Industrial Con-
trol Systems (ICS) has revealed the level of sophistication
of attackers. Firstly, recent cases of attacks (e.g., Stuxnet) have
revealed that these attacks have been specifically written for ICS
[1]. Secondly, the attacks target specific critical control appli-
cations within the control system environment. This shows that
sophisticated attackers have thorough knowledge of not only the
control and automation computer systems and their vulnerabil-
ities, but they also possess an understanding of the dynamics of
the physical system to ensure maximum impact.
Present day ICS networks, such as the power system Super-
visory Control and Data Acquisition (SCADA) systems, have
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increased connectivity to corporate IT networks to enable re-
mote maintenance of field devices and provide critical infor-
mation for decision making at the corporate center [2]. These
connections were often created without an understanding of the
potential consequences and thereby, have increased the attack
surface of the system. Though attacks targeted at these systems
are not frequent, their physical, economic and social impacts
can be quite severe if successful [3].

The National Institute for Standards and Technology (NIST)
recognizes that in order to protect ICS from cyber threats, it
is important to have a defense-in-depth approach [2]. The De-
partment of Homeland security recommends a combination of
Firewalls, De-militarized Zones and Intrusion Detection Sys-
tems (IDS) to implement defense-in-depth [4]. Though the im-
plementation of these technologies in traditional IT networks
is well understood, their application to ICS is not straightfor-
ward [2]. Security solutions that specifically cater to ICS sys-
tems need to be developed with the limitations and constraints
of the environment in mind.

Intrusion Detection Systems (IDS) that classify data packets
as true or anomalies are popularly used in computer systems
to ascertain data integrity. The implications of a poor IDS in
the IT environment might not be very serious. However, in the
SCADA environment where false negatives are unacceptable
and a low false positive rate is desired, a poor IDS could cause
serious problems to the dependent physical process. IDS solu-
tions catering specifically to SCADA systems are still in early
days of development.

Intrusion detection systems are traditionally classified into
signature-based detection and anomaly-based detection [5].
Signature-based IDS look for known patterns of malicious
activity. The database of the IDS is constantly updated with
new attack signatures as and when they are discovered.
Anomaly-based IDS, however, do not look to identify the
actual sequence of intrusion, but look for deviations in the
observed data. These IDS usually learn the normal behavior
of the system based on statistical profiling. During real-time
operation, the observations are compared to the learnt model
and any deviation is marked as an anomaly. Most IDS in the
IT domain are signature-based as there is an abundance of
signatures available for this domain. However, in SCADA
systems, the protocols, networks and architectures are unique
to the environment. A limited signature database could make
the IDS blind to certain attacks thus making it ineffective.

The Automatic Generation Control (AGC) is a wide-area
frequency control application that receives power flow and fre-
quency measurements from remote sensors. It ensures system
frequency remains within acceptable bounds and power ex-
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change between adjacent control areas is limited to scheduled
value. This paper explores the potential impact of smart attacks
on AGC. We also present an attack resilient control framework
that employs an anomaly-based IDS and mitigation to maintain
system stability during the attack period.

II. RELATED WORK

The following research efforts have looked into the impacts
of cyber attacks on power system control applications. In our
earlier work [6], the impact of data integrity attacks directed at
the AGC on operating frequency stability was introduced. In
[7], Esfahani et al. propose a technique to gauge the impact of
an intrusion attack on a 2-Area power system. The impact of
cyber attacks on FACTS are discussed in [8] and [9]. In [10], the
impact of cyber attacks directed at wind farms on power system
dynamics was presented. In [11], the authors present the impacts
of data integrity and denial of service attacks on a chemical re-
actor system. The authors of [12] and [13] discuss the impact
of a cyber attack on a power system in terms of load loss. In
[14], the authors show the impact of a cyber attack on the total
generation in a system through a graph-based model. The im-
pact of data injection and manipulation on power system state
estimation is presented in [15]. In [16], the impact of load redis-
tribution attacks on state estimation is presented. The authors
show that operational decisions made based on incorrect power
flow and load measurements can cause uneconomic operation
and stressed operating states. In [17], the authors explore the
impact of compromised measurements on electricity markets.
The attack-defense experiment is modeled using game theory.

The authors of [18] have consolidated a classification of
anomaly detection techniques and grouped these research
efforts appropriately. The authors of [19] apply the statistical
anomaly detection technique to identify progressive faults in
gearbox operation. In [20], the authors present a real-time
payload-based anomaly detection for critical infrastructures.
In [21], the authors use the rough set classification algorithm
to develop an anomaly detection technique to identify errors
introduced in the power flow meters. To the best of our knowl-
edge, none of these efforts inspect the information conveyed by
these packet at the application level. These detection techniques
do not check if the reported measurements conform to power
system theory. One such effort employs invariant induction,
a technique that identifies power flow measurements that do
not satisfy an underlying algebraic equation as anomalies [22].
However, no such technique exists for real-time control appli-
cations. The rest of this paper discusses the impact of malicious
data injection on AGC, and the design and implementation of
attack detection and mitigation.

III. CONTROL SYSTEM ATTACK MODEL AND IMPACT STUDIES

In automated control systems (Fig. 1), the control center ac-
cepts measurements y(t) as input from field devices and pro-
cesses them to obtain the output control signal w(%). A smart
attacker could manipulate measurements such that any opera-
tional decision made based on these measurements could trigger
control actions that are unwarranted for the true system state.
This could in turn cause instabilities in the underlying physical
system or force the system to operate at uneconomical operating
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Fig. 1. Control System Model.

conditions due to non-optimal control actions. The need is for
attack resilient control systems that are able to detect the pres-
ence of malicious data.

A. Attack Templates

This section presents a formal model for the attack templates
explored in this paper [11]. The impact of these attacks on power
system stability and electricity market operation is presented.
In the following definitions, ¢ and 7, represent time and attack
period, respectively.

i) Scaling Attack: A scaling attack involves modifying
true measurements to higher or lower values depending on the
scaling attack parameter A,

e [ )
ro={ 0

ii) Ramp Attack: Ramp attacks involve gradual modifica-
tion of true measurements by the addition of A,. - ¢, a ramp func-
tion that gradually increases/decreases with time

N B (3] for t ¢ 7,
g(t)—{y(t)-i-)\r-t for t € 7,.

for t ¢ 7,
for t € 7.

iii) Pulse Attack: As opposed to a scaling attack, where
measurements are modified to higher/lower values during the
entire duration of the attack, this type of attack involves mod-
ifying measurements through temporally-spaced short pulses
with attack parameter A,.

iv) Random Attack: This attack involves the addition of
positive values returned by a uniform random function to the
true measurements. The upper (a) and lower (b) bounds for se-
lection are provided to the function as an input

N 70 for t ¢ 7,
y (1) = { y(t) + rand(a, by for t € 7,.

B. Impact of Data Integrity Attacks on AGC

The power system is divided into balancing areas that are con-
nected by tie lines to facilitate exchange of power. Each bal-
ancing area has a control center in which the AGC application
runs as a part of the energy management system. The AGC is
responsible for maintaining system frequency at 60 Hz and lim-
iting tie line power exchanges to their scheduled values. To this
end, the algorithm calculates generator corrections based on fre-
quency and tie line power flow measurements obtained from re-
mote sensors via Inter-Control Center Communication Protocol
(ICCP). These generator corrections, called the Area Control
Error (ACE), are issued once every 5 seconds. The ACE for
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Fig. 2. 3-Area System.

balancing area ‘7', calculated based on the following equation,
instructs generators to either ramp up or down:
ACE; = (Pie — Picn) + 5i(f — 60). (1

In the above equation, Py, is the scheduled tie-line power ex-
change between the balancing areas, 3; is the frequency bias for
balancing area ¢ and 60 (Hz) corresponds to the desired system
frequency. The variables P, and f are the tie line power flow
and system frequency measurements obtained from sensors in
the system. The attack templates discussed in this paper involve
injection of fabricated P, and f measurements in order to force
the miscalculation of ACE. As the AGC is required to issue
control commands once every 5 seconds, it is unable to benefit
from existing measurement validation techniques such as the
state estimation, which typically runs once every 5 minutes at
the ISO/RTO level. This makes the AGC vulnerable to attacks
that involve measurement corruption.

The impacts of attacks on the AGC will be demonstrated
using the 3-area system shown in Fig. 2. The system consists of
three balancing areas that are interconnected by tie lines. The at-
tack templates require the compromise of sensors L1, L5 and f,
the tie line power flow and frequency sensors that provide mea-
surements to AGC. The attacker possesses knowledge to com-
promise these sensors at the corresponding substations compro-
mising existing security mechanisms.

In order to inject the correct measurements according to the
attack template, the attacker is required to know AGC opera-
tion as well as information on the target system. This informa-
tion includes load forecasts, scheduled tie line flows, load fre-
quency sensitivity parameter ‘0)’, droop constant /2’ and fre-
quency bias (3 for each area. The load forecast and scheduled tie
line flow information are used to modify system load perception
according to the attack template. Parameters I and I? are used
by the attacker in (2) to identify impactful attack parameters in
the attack parameter selection process and to calculate attack
frequency measurements as shown later. It is assumed that the
maximum value of ACE that does not raise an alarm in the EMS
is 0.05 pu. The attacker uses the frequency bias /3 in (1) to en-
sure that the ACE computed based on injected measurements re-
mains within this value and that the attack remains undetected.
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TABLE I
3-AREA SYSTEM SIMULATION PARAMETERS (FROM [23])

Area’i” | D (pw/Hz) | R (Hz/pu) | B (pu/Hz)

Area 1 0.015 3.00 0.3483

Area 2 0.016 2.73 0.3827

Area 3 0.015 2.82 0.3692
TABLE II

GENERATOR PARAMETER FOR LMP CALCULATION

Area Cost Per-unit Limit (min, max)
Area 1 | 33.07 $/MWhr 0.3, 0.8
Area 2 | 32.11 $/MWhr 0.2,0.3
Area 3 | 32.54 $/MWhr 0.1, 0.4

These parameters for the 3-area system are provided in Table I.
The following sections discuss the attack mechanism the corre-
sponding physical system and market impacts.

1) Impact on Physical System Stability: The threat actors and
for this type of attack could be disgruntled employees, insiders,
nation states or terrorist organizations keen on affecting the re-
liability of the system. The goal of the attack is to cause a rapid
decline in the system frequency in order to trigger load shedding
schemes. Pulse and random attacks do not fit this purpose as the
attacker would look to inflict a significant and definite impact.

In this scenario, the attacker modifies generator operating
points through the AGC by providing a wrong perception of the
system load. The attack mechanism can be explained with the
following example. The power flows shown in Fig. 2 represent
the scheduled tie line flow values. The attacker tricks Area 1
AGC into believing that the flow on L+ has increased by 0.01
pu, which corresponds to an increase in system load A Py . This
is achieved by reporting a tie line power flow measurement of
0.1122 pu to the AGC. At the same time, the attacker plays
normal measurements according to scheduled value to Area 3
AGC in order to prevent corrective action. The attacker then
calculates the malicious frequency measurement to be reported
to the AGC using the equation,

—APy,

AF = 3

> (R% +Di,)

i=1

= —0.0091 )

On receiving the measurements, Area 1 AGC computes the
ACE to a value of 0.0068 pu, and will instruct generators in
Area 1 to ramp down. However, in reality, this action causes
the system generation to reduce below the actual system load,
thereby causing a generation imbalance. This generation imbal-
ance would reduce system frequency. The following section in-
troduces the attacker’s procedure to identify a value for attack
parameters A, and A,.

i) Attack Parameter Selection: The selection of A, and A,
is critical from the attacker’s perspective. The parameters have
to be selected such that the attack creates the desired impact and
at the same time does not trigger any data quality alarms in the
control center. To be more precise, the attacker has to satisfy the
following criteria.

1) Itis assumed that data quality alarms would be triggered if

the calculated ACE exceeds 0.05 pu. The AC'E calculated
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Fig. 3. Scaling Attack Parameter Selection.

by the control center during the attack should not exceed
this value.

2) Underfrequency load shedding schemes are triggered only
when the system frequency reaches 59.3 Hz [24]. Hence,
the attack parameters should be selected such that the
system frequency declines to 59.3 Hz to cause an impact.

Intuitively, these criteria have contrasting requirements.
Fig. 3 plots the variation of maximum ACE and the least
system frequency during the attack period (10 AM-1 PM)
against a range of A;. The attacker would construct these
graphs based on (1) and (2) for attack parameter selection. The
following observations can be made from these figures.

1) As the magnitude of A, increases, the least system fre-
quency observed during the attack decreases. At a value
of Ay = 0.023, the system frequency declines to 59.3 Hz.
This means, for this system under consideration, in order
for the scaling attack to have an impact, the value of A,
should be a minimum of 0.023. Thus, this analysis identi-
fies the lower bound A, min for the attack magnitude.

2) Asthe value of A, increases, the maximum ACE generated
during the attack period increases. After a value of A\; =
0.049, the maximum ACE increases beyond the threshold
0f 0.05 pu. This means, beyond a value of A, = 0.049, the
data quality alarms in the control center would be triggered.
Hence, for this system, in order for the attack to be stealthy,
the maximum attack parameter A, n,., should be below
0.049.

To summarize, in order for the scaling attack to be effective
during this period, that is impactful and stealthy, the condition
(0.023 < XA; < 0.049) has to be satisfied. A similar analysis
for ramp attacks reveals that in order for the attack to be ef-
fective, the condition (0.0022 < A, < 0.0024) has to be sat-
isfied. In order to cause maximum impact, the attacker would
use Ay = 0.049 for scaling attacks and A, = 0.0024 for ramp
attacks. Fig. 4 shows the variation between the actual system
load and the perceived load during scaling and ramp attacks with
these parameters. Fig. 5 shows the frequency of the system in
response to the change in generation.
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ii) Impact Analysis: The following observations can be
made from Figs. 4 and 5 about the impact on physical system
stability.

1) Firstly, the maximum ACE deviation during the scaling
and ramp attacks is 0.0481 pu and 0.0476 pu, respectively.
As these values remain within the 0.05 pu threshold, data
quality alarms are not triggered in the control center (This
is not shown in Fig. 4 and 5).

2) Secondly, it is observed the system frequency due to both
scaling and ramp attacks declines to 59.3 Hz, thus leading
to a load shedding scenario.

3) The system frequency due to scaling attack declines to 59.3
Hz much sooner when compared to ramp attacks. This is
because the scaling attack instantly modifies the perceived
load thereby triggering significant ACE correction. The
ramp attack injects gradual deviations in perceived load
and thereby creates a delayed impact.

4) Finally, it is observed that the magnitude of frequency
decline caused by scaling attack is more severe when
compared to the ramp attack despite similar perceived
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loads towards the end of the attack period. This is because
the scaling attack effects a significant difference between
system load and generation for a longer duration when
compared to the ramp attack.

From the above, it can be inferred that the impact from scaling
attack is more severe when compared to ramp attack. For this
period of operation, maximum impact will be caused if param-
eters A; = 0.049 for scaling and A,. = 0.0024 for ramp were
employed. An attacker would have to perform similar analysis
in order identify effective A, and A, ranges for other periods of
operation.

2) Impacts on Electricity Market Operation: The attack on
electricity market operation involves modification of generator
operating points identified by the security constrained economic
dispatch (SCED). A market participant (utility) could use this
type of attack to increase its generation and reduce generation
in an adjacent balancing area. By doing so, the utility is able to
increase revenue as it receives a greater financial settlement.

Using the same base case in Fig. 2, the attack mechanism can
be explained as follows. The tie line flow between Area 2 and 1
is 0.0205 pu. In this case, the attacker modifies this measurement
value to 0.0225 pu to indicate that Area 2 is supplying more
than the scheduled value. The AGC in Area 2 calculates the
ACE corresponding to this measurement as 0.0013 pu, which
forces the generators in the area to ramp down. At the same time,
the ACE computed by the AGC in Area 1 forces the generators
in Area 1 to ramp up, thereby generating more than operating
point suggested by the SCED. As a decrease in generation in
Area 2 is compensated by an increase in Area 1, the system
frequency is not impacted. This is confirmed in Fig. 6, where
the system frequency is found to remain around 60 Hz even
during attacks. However, the market participant in Area 1 will
benefit from this scenario as it receives a greater settlement. In
the following section, the impact of scaling, pulse and random
attacks on calculation of settlements is shown.

The following parameters were used for the attacks—i)
Scaling—A; = 0.001, ii) Pulse—\, = 0.0025, and iii)
Random-a = 0.03,b = 0. Fig. 7 shows the additional genera-
tion from Area 1 as a result of the attack.

IEEE TRANSACTIONS ON SMART GRID, VOL. 5, NO. 2, MARCH 2014

%107 Scale Attack Impact
T T

Excess Generation (pu)
N

10:00 10:15 10:30 10:45 11:00 11:15 11:30 11:45
Time (HH:MM AM)
5 -3 Pulse Attack Impact
3 10
2 4t - - : . .
c
k]
8
@
c
[}
o
o
o
3
& 10:00 10:15 10:30 10:45 11:00 11:15 11:30 11:45
Time (HH:MM AM)
= x10° Random Attack Impact
g 34 T T T T T
c
o
&
[
c
O
o
13
o
8
& 10:00 10:15 10:30 10:45 11:00 11:15 11:30 11:45

Time (HH:MM AM)

Fig. 7. Excess Generation during Electricity Market Attack.

* The scaling attack forces the units in Area 1 to operate
at 0.0011 pu higher than the correct operating point for
a scaling factor A, = 0.001. As a result, the generator
produces a total excess generation of 0.0266 pu during the
attack period.

* The pulse attack causes Area 1 to have periods of excess
generation of 0.0033 pu. This results in a total excess gen-
eration of 0.0395 pu during the attack period.

* The random attack results in a total excess generation of
0.0430 pu during the attack period.

This attack impacts the calculation of settlements to market
participants. The settlement provided to a generation utility is a
product of the power supplied by the utility to the system and
the locational marginal price (LMP). The following generator
parameters were assumed for LMP calculation.

For the load forecast during the period of simulation, the LMP
was obtained to be 32.54 $/MWhr at all nodes. Assuming a
system base of 1000 MW, the total excess generation during
the attack period for scaling, pulse and random attacks is 26.6
MW, 39.5 MW and 43 MW. This corresponds to additional set-
tlements of 865.56 $, 1285.33 $ and 1399.228, respectively.
Hence, for the attack scenarios presented in this section, the im-
pact of random attack on market operation is the highest, fol-
lowed by pulse and scaling attacks. An attacker could use these
attacks periodically to consistently increase settlement.

IV. ATTACK RESILIENT CONTROL FOR POWER SYSTEMS

The notion of attack resilient control for ICS was first pre-
sented in [25]. With reference to the cyber-attacks context, we
define attack resilient control as a combination of smart attack
detection and mitigation. Smart attack detection, for example,
could be implemented through domain-specific anomaly detec-
tion algorithms that verify the integrity of received measure-
ments based on simulated measurements obtained from equa-
tions that govern the functioning of the underlying physical
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system. Smart mitigation techniques should have the ability to
function using forecasts when measurements can not be trusted.

The power system is composed of several control systems

that work in conjunction to ensure system stability [26]. Each
control application has its own vulnerabilities depending on the
type of protocol, network architecture and security technologies
it uses. Similarly, the impact from a successful attack on a con-
trol system depends on the physical parameter it is monitoring
and controlling [3]. Therefore, there may not be one single solu-
tion for an attack resilient power system. It is important for crit-
ical power system control applications to be provided with the
required intelligence to detect attacks impactful in that domain.
The following classes of information could be used to design
attack resilient control modules.

» Forecasts: Load forecasts could be used to detect attacks
that mimic unprecedented load changes. In [10], a scenario
in which the attacker modifies Pt (reference power) in
a wind turbine to force a reduction in the active power
output was shown. In this scenario, wind forecast infor-
mation could have been used to detect the attack.

o Situational Awareness: Stability limits, system topology,
geographic location, etc. could help identify attack sce-
narios. Situational awareness could also help the control
module process mitigation strategies. E.g., Hospitals zones
are given priority in scenarios where load shedding has to
be performed.

* System Resources: System resources like generation re-
serves, VAR reserves, available transmission capacity,
backup communication paths, etc. should be considered to
process efficient mitigation strategies. E.g., if the the cyber
logs of a substation reveal a potential attack, generation
could be re-dispatched to prevent instabilities if the attack
is successful.

» Attack Templates: The control module should be aware of
effective attack templates and attack signatures for each
control application. This could assist in early attack detec-
tion and defense at the cyber layer.

* System Data: System parameter data, such as inertia con-
stants I, play a critical role in system response to distur-
bances. A control module provided with this information

would be able to check for anomalous behavior in system
performance.
ATTACK RESILIENT CONTROL FOR AGC
The objective of the proposed attack resilient control mecha-
nism for AGC is twofold—i) to detect the presence of malicious
measurements and prevent the controller from performing in-
correct ACE computations, and ii) to maintain the balance be-
tween generation and demand in the presence of untrusted mea-
surements by using a model-based approach. In this paper, we
propose a mitigation strategy for attacks that impact physical
stability of the power system only. Fig. 8 presents a conceptual
diagram for the implementation of attack-resilient AGC. The
frequency and tie-line flow measurements received at the con-
trol center will be used by the AGC to calculate ACEpg, the
real-time ACE. This ACEp is checked by the anomaly detec-
tion engine to determine if the value is a anomalous. If ACEp is
identified as an anomaly, the model-based AGC is called upon.

A. Anomaly Detection Engine

Real-time load forecasts are calculated in 5-minute intervals
for 60—180 minutes in the future [27]. The anomaly detection
algorithm uses this real-time load forecast to predict AGC op-
eration over a given time-period. During real-time operation,
the performance of AGC is compared to this prediction to iden-
tify anomalies. The anomaly detection algorithm consists of two
rules to detect anomalies. Rule 1 employs statistical characteri-
zation of forecasted ACE values and rule 2 uses temporal char-
acterization of ACE performance. Rules 1 and 2 work in con-
junction with one another to detect smart attacks that can cause
frequency instabilities of the type described earlier. Details on
rules 1 and 2 are provided below.

1) Rule 1—Statistical Characterization of ACE: This rule
is incorporated to catch single exorbitant ACE values obtained
from malicious measurements. The following steps explain this
process in detail.

» Step 1: Density Estimation

Before every hour of operation, the anomaly detection
engine receives the load forecast for the next hour. Based
on this information and the generation schedule, an “ACE
forecast” for the next hour of operation is made. The
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Algorithm: [ACEFf, . , ACEF,, ] Identifier
Input: f(ACEFR), &
Output: [ACEFp, . , ACEp ]
begin
i =j = index (max f(ACER))
Area = A(, j)

while Area < 41 do
if A(i-1, j) > A(i, j+1) then

[ 1=1i-1
else
| j=j+1
end
Area = A(i,j)
end
end

forecasted ACE (ACEF) values are then fed into a Kernel
Density Estimator module [28]. The density estimator
constructs a probability density, f(ACEp), for the in-
puted ACEp values as shown in Fig. 9. The probability
of a particular range of ACEp values is obtained by
integrating f(ACEF) between the range. The probability
density helps identify the range of ACE values that are
most probable during the next hour of operation.

o Step 2: Anomaly Detection
A bound 47 that corresponds to the probability of a range
of ACE values, that is the area under the density graph, is
specified to classify anomalies from true values. This 6; is
one of the tuning parameters of the anomaly detection en-
gine. If §; = 90%, the anomaly detection algorithm identi-
fies the range of ACEF values, [ACEp . . ACEf__ ], that

has a probability of 0.9. The range [ACEp,_ . , ACEp__]

is calculated from the following equation.

-ACEp,
5, = / F(ACER)

ACER, .,

The following algorithm ensures the area indicated by 61
is determined over the most probable values of ACE .
Once the probability density is constructed, the algorithm
identifies the index of the ACEr which has the highest
value for f(ACE r) and assigns the value to variables i and
j. Next, the area under the graph, which gives the proba-
bility, is determined using the function A(i, j). The while
loop is executed as long as A(4,j) < &é;. The algorithm
compares A(i — 1,7) and A(i, 5 — 1). If A(i — 1,5) >
A(i, j—1),the value of i is changed to i—1.1f A (4, j—1) >
A(i—1,7), j is incremented by 1. This ensures that area
is identified across the most probable ACEy values. Once
A (i, ) < b1 is false, the values of ACEp at ¢ and j are
identified as ACEp,_ , and ACEp___, respectively.
During operation, if ACEgr computed by the AGC algorithm
falls outside [ACEfr,_. , ACEF__ ], the measurement is identi-
fied as an anomaly.
2) Rule 2—Temporal Characterization of ACE: In some
cases such as ramp attacks, smart attackers may manipulate
measurements such that the system is gradually deviated from
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the correct state of operation to conceal the attack effectively. In
such scenarios, rule 1 alone is insufficient as successive ACEg
from 6;. Under such circumstances, it becomes important to
observe a series of measurements to identify an attack. Rule
2 of the anomaly detection algorithm observes a series of
ACEpg measurements to detect ramp attack type scenarios that
gradually modify operating points of generators.

The ACE is a corrective signal sent to generating units to ad-
just operating points once every five seconds. During a period
of operation the final operating points of generating units are a
result of successive ACE corrections added to the initial oper-
ating point. The ACE corrections are generated as a result of
load changes. Hence, an algebraic sum of ACE signals will re-
flect the load change during that period of operation.

* Anomaly Detection

A comparison of the algebraic sum of ACER and ACEp
values will reveal the difference between the expected final
operating point and actual final operating point during a
time-period of operation, 7 - W is defined as,

A 65 bound is defined such that, if ¥ > 65, ACER € ¢ are
marked as anomalies.

During real-time operation, the time taken to check if ACEg
and X ACEp satisfy rules 1 and 2, respectively, should be less
than a second in modern computers. Therefore, the proposed
anomaly detection algorithm will operate within the AGC cycle.

3) Anomaly Detection Engine Parameter Selection: The per-
formance of the anomaly detection engine is tied to parameters
81 and 2. System operators or software programs should use
the following guideline to tune 6; and ¢, for low False Positive
(FP) and False Negative (FN) rates.

o Step 1: The following data should be generated from the
real-time load forecast—i) f (ACEp) and X;ACEp data
and 11) effective )\s,min < )\s < )‘s,max and A'I‘,H]ill < )\7’ <
Ay max ranges for the period of operation under considera-
tion.

0.02
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* Step 2: Create a dataset that consists of true values and
measurements corrupted with A; min and A, min that were
identified in the previous step. This is to ensure that any
attack with A > A, is detected. This dataset will be used
in the next step to tune 6, and d» for low FP and FN rates.

* Step 3: Run the AGC algorithm offline with the dataset
created in the previous step in order to identify ACE
and X;ACE. Some of these values are a result of true
measurements and some of them are derived from corrupt
measurements. For every value of 41, identify [ACEg_, |
ACEp__ | from f(ACEp) and observe if ACE is iden-

tified as anomaly or true according to rule 1 check.
Similarly, for every value of §2 calculate ¥ from >;ACE
and X;ACEr and observe if X;ACE is identified as
anomaly or true according to rule 2 check. Depending on
the nature of the original data and result of the anomaly
check, calculate the False Positive (FP) and False Nega-
tive (FN) rates for every value of §; and d-. Select §; and
62 values corresponding to low FP and FN rates.

The FP and FN rates are calculated from (3) and (4), where
TN and TP refer to true negatives and true positives, respec-
tively. An efficient anomaly detection algorithm should have
low FP and FN rates. If the FP rate is too high, there will be
too many false alarms and the operators will lose their trust in
the system. A high FN rate means that the anomaly detection
algorithm will fail to catch malicious measurements and attacks
will not be detected. Therefore, it becomes important to deter-
mine the optimal amount of §; and 4> to avoid situations of this

type.

FP Count
FP ale =
Rate FP Count + TN Count (3)
FN Count
FN Rate = o “

FN Count + TP Count

B. Model-Based Attack Mitigation

In scenarios where the meters or communication channels to
the control center are compromised, the anomaly detection al-
gorithm will be effective in identifying bad data. Under such cir-
cumstances, measurements from field sensors can no longer be
trusted. The control center will be “flying blind” while trying to
match the load and generation. The need is to make use of a tech-
nique that makes an educated guess based on system knowledge
and appropriately issues ACE commands to generators without
need for measurements.

Real-time load forecasts are calculated using techniques such
as regression models, neural networks and statistical learning
algorithms. These approaches take into account variables that
include weather forecasts and time factors (time of the day, year,
etc.) to arrive at a load forecast.

The proposed model-based mitigation strategy uses this load
forecast in order to predict AGC performance and thereby ob-
tain the ACE forecast (ACE ). As shown in Fig. 10, an error is
added to the forecast in order to generate a simulated real-time
load. The simulated real-time load and the forecast are then fed
into an offline AGC module. As system generation resources are
planned based on the load forecast, running the AGC algorithm

)

Real-time Load
Forecast

ACE;

Offline AGC

Forecast Error

(.

Fig. 10. Generation of ACE .

offline using this forecast and simulated real-time load as input
would generate ACEp.

As explained earlier, the ACEp obtained from this block is
fed into the Kernel Density Estimator module for the purposes
of attack detection. For mitigation, the mean of the ACE for
the forecast period is used to issue generator correction during
an attack. As the real-time load forecast is made for every 5
minutes for the next one hour of operation, the mitigation will
pre-compute 12 ACE g corrections for the time period. When an
anomaly is detected, the mean of these forecasted ACE values
would be issued as generator corrections. This approach is fol-
lowed until the trust in sensors or communication channels is
restored.

V. SIMULATION STUDIES

The goal of this section is to analyze the performance of the
anomaly detection and model-based mitigation during attack
scenarios. The study involves two components—i) Anomaly
detection engine tuning for the period of operation under con-
sideration and ii) Performance analysis of attack resilient con-
trol during attack scenarios. The attack-defense experiments on
AGC was performed using the 3-Area power system introduced
in Section III. Additionally, the following data are required to
perform these studies.

* Real-time load forecasts—Real-time load forecasts are
used to schedule generation resources during real-time
operation [27]. The New England ISO website provides
5-minute load data for their system. As corresponding
load forecast information is unavailable, the actual load
data was per-unitized and assumed to be the real-time load
forecast for the 3-Area power system. The real-time load
forecast is used to calculate f(ACEp) and 3;(ACEF)
for anomaly detection tuning and mean of ACEp for
model-based mitigation.

* Load data—The load data for the same time period as
above is obtained by adding an error to the real-time
forecast. Reference [29] characterizes the error from
real-time load forecast into a truncated normal distribution
with mean —1.15, min/max F349, standard deviation
98 and autocorrelation 0.61. Load data generated using
this technique is made use of in the following cases—i)
to generate dataset for anomaly detection engine tuning
and ii) to generate corrupted load data for performance
analysis of attack resilient control.

The performance of attack resilient control was analyzed
using data for one day of operation obtained from [30]. The
scaling and ramp attacks were implemented between 10 AM-1
PM and 1 PM—4 PM, respectively. Table III summarizes the
effective A, and A, range for this period of operation along
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TABLE III
SIMULATION CASE STUDY SUMMARY
Attack Time A 41, 02
Scaling | 10 AM — 1 PM 0.024 < As < 0.05 0.92, 0.049
Ramp 1PM —-—4PM 0.0021 < A < 0.0024 0.94, 0.05

with 6; and 62 used by the anomaly detection engine for the
first hour. The following section explains anomaly detection
engine tuning for the scaling attack time period.

A. Anomaly Detection Engine Tuning

The parameters 61 and 62 have to be selected for every hour
of operation in order to maintain acceptable FP and FN rates.
Based on the guideline presented in Section IV.A3, this process
is demonstrated for the period from 10 AM—11 AM from the
test data.

1) Step 1: From the load forecasts for this period, f (ACEp)
and »;ACEpr were generated. Through the A selection
procedure shown in Section III.B, the A, and A, ranges for
this period were identified as—i) 0.024 < A, < 0.05 and
i) 0.0021 < A, < 0.0024.

2) Step 2: A dataset was created with a hundred load data
subsets by adding noise to the real-time load forecast. Each
load data subset is a representation of the load curve for
the period under consideration. Of these, twenty subsets
were corrupted with scaling attack template with A ypin =
0.024 and another twenty subsets were corrupted using the
ramp attack template with A, i, = 0.021.

3) Step 3: The objective of this step is to identify values of 61
and 65 that result in low FP and FN rates. For this purpose,
the FP and FN rates for the ranges 0.8 < ¢; < 0.99 and
0.01 < 62 < 0.08 were analyzed. Each subset of load data
was run through an offline AGC program in order to de-
termine the individual ACE values and >; ACE. Based on
rules 1 and 2, anomalies were identified in the attack data
set for every value of §; and 62. The FP and FN rates were
then calculated based on the results of anomaly detection.
In these studies, the impact of ; on FP and FN rates was
evaluated with rule 1 only implemented. Similarly, studies
for impact of 2 on FP and FN rates was performed with
only rule 2 implemented. The following section discusses
these results.

» False Positive Analysis: Fig. 11 presents the variation of
false negative rate for different values of §; and 5. As the
value of ¢; increases from 0.8 to 0.99, the false positive
rate decreases. This is because, at lower values of 61, even
true ACE values are also identified as anomalies as they

lie outside the [ACEf,_, , ACEp__ | range. The FP rate

beyond §; = 0.92 is minimum at zero. As in the case of 61,

the FP rate decreases with as 85 is varied between 0.01 and

0.08. The FP rate is significantly high in the region 62 <

0.03. As the 62 bound is strict at this point, the condition

W > 45 is satisfied even for true measurements. The FP

rate is zero in the region 62 > 0.049.

» False Negative Analysis: Fig. 12 presents the variation of
false negative rate for different values of 4; and 6;. At a
value of 6; = 0.8, the FN rate is non-zero at 0.14. This is
because, even with a narrow [ACEg_, . ACEp__ ] band,

min ? max
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Fig. 11. False Positives Analysis.

some measurements anomalous introduced by the ramp at-
tack template escape detection. As the value of 67 is in-
creased from 0.8 to 0.99, the [ACEg,_, , ACEg _ ] band
widens. With this, more anomalous measurements intro-
duced by the ramp attack template escape detection. This
can be observed with the spike in FN rate after 6; = 0.85.
Scaling attack measurements are detected for all values of
o1.

The value of 62, which represents the maximum tolerated
cumulative ACE variation the period of operation, was
varied between 0.01 to 0.08. At a value of 65 = 0.01, the
FN rate is 0.015. At this point, the algorithm fails to de-
tect some anomalous measurements introduced by scaling
attack. As the value of 85 is increased, more anomalies in-
troduced by the scaling attack template are not detected.
At a value of 6 = 0.05, all the anomalies introduced by
the scaling attack are missed. However, all anomalies in-
troduced by ramp attacks are identified at all points.

The analysis reveals that scaling and ramp attacks are iden-
tified at all values of 4; by rule 1 and 62 by rule 2. However,
the FP rates are least in the region é; > 0.92 and 4, > 0.049.
Hence, for this period of operation, the anomaly detection en-
gine should be set to 6; = 0.92 and 62 = 0.049 for the best per-
formance. Similar analysis for the period 1 PM-2 PM resulted
in 41 = 0.94 and 6> = 0.05.

B. Online Performance Analysis

The attack dataset that was used to test online performance
involved measurements corrupted with scaling and ramp pa-
rameters of A, = 0.05 and A, = 0.0024. This is justified as
the attacker would have identified these values as the most im-
pactful and stealthy. In this section, we present results from the
operation of attack-resilient AGC during attacks. The principle
of operation is that when an anomaly is detected, model-based

FP Rate
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Fig. 12. False Negatives Analysis.

AGC is employed until the end of the hour. It is assumed that
during this time, the source of the cyber threat is identified and
negated. At the end of the hour, AGC returns to the traditional
measurement-based operation.

Performance During True Positives: i) Mitigation of Scaling
Attacks: Fig. 13 shows system performance during the scaling
attack period. The anomaly detection engine is successful in
identifying the scaling attack through the ACE forecast cal-
culated at 10.00 AM. The algorithm calculated the value for
ACE,;, and ACE,,, as —0.0070 and 0.0065, respectively,
based on §; = 0.92. However, the scaling attack forces the
calculated real-time ACE to 0.0282, which is not within the
range defined by [ACEF, . . ACEp___]. Hence the field mea-
surements for rest of the hour are marked anomalous and the
AGC operation is carried out based on real-time load forecasts.
From Fig. 13 it is observed that the model-based mitigation
is effective in maintaining system frequency within reasonable
limits.

ii) Mitigation of Ramp Attacks: Fig. 14 shows the frequency
performance of the system during the ramp attack period (1-4
PM). It is observed that the actual system frequency, indicated
by the solid line, deviates initially for some period of time be-
fore returning to 60 Hz. This is because, the anomaly detection
algorithm is able to identify ramp attacks only after observing a
series of measurements to determine the algebraic sum of ACE.
Once the attack is identified, AGC is operated for the next hour
based on the real-time load forecast.

For the first hour of the ramp attack, between 1-2 PM, the al-
gebraic sum of ACE from the forecast (ACE ) was determined
to be —0.0002 pu. With the inclusion of the tolerance bound
given by 8o = 0.050, the acceptable range of algebraic ACE
sum is between —0.0502 pu and 0.0498 pu. However, the alge-
braic sum of ACE during real-time operation for the same hour
was determined to be 0.0595 pu, which is outside the accept-
able limit. This anomaly triggers model-based AGC operation
for the next hour. From Fig. 14, it is observed that the frequency
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Performance of Attack Resilient Control during Ramp Attacks
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deviation is arrested and the brought back to acceptable values
for the next hour during the attack period.

Performance During False Positives: During the simulation,
the anomaly detection algorithm identified a true measurement
as an anomaly. A real-time ACE of —0.0071 was generated at
around 6.14 AM. However, the [ACEpF, . , ACEF, ] range
was evaluated to be [—0.0065,0.0070] for this period of op-
eration. This triggered unwarranted model-based mitigation.
Fig. 15 shows the frequency performance of the system during
this period. It is observed that there is a difference in frequency
performance when model-based AGC is used. However, the
system frequency is still maintained within acceptable limits.

VI. CONCLUSION

In this paper, we showed the impacts of data integrity at-
tacks on AGC operation. It was observed that scaling, ramp,
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pulse and random attacks severely affected power system sta-
bility and market operation. We proposed the notion of attack
resilient control as a combination of smart attack detection and
mitigation. The idea was to develop detection and mitigation
techniques based on knowledge of power system operation. The
idea was extended to an attack resilient AGC that detects mali-
cious data injection based on real-time load forecasts. The per-
formance of the anomaly detection algorithm was measured in
terms of false positive and negative rates and the performance of
the mitigation was observed through frequency performance of
the power system. Results from simulation studies have shown
that the algorithm is efficient in mitigating attacks and main-
taining the system within safe operating bounds. Our future
work includes developing mitigation strategies for attacks that
impact electricity market operation through AGC and coordi-
nated cyber attacks on power system control.
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